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Abstract

Cancer registries are an important source of population-level information on brain tumor incidence 

and survival. Surveillance, Epidemiology, and End Results (SEER) registries currently collect data 

on specific required factors related to brain tumors as defined by the American Joint Commission 

on Cancer, including World Health Organization (WHO) grade, MGMT methylation and 1p/19q 

codeletion status. We assessed ‘completeness’, defined as having valid values over the time 

periods that they have been collected, overall, by year, histology, and registry. Data were obtained 

through a SEER custom data request for four factors related to brain tumors for the years 2004–

2012 (3/4 factors were collected only from 2010 to 2012). SEER*Stat was used to generate 

frequencies of ‘completeness’ for each factor overall, and by year, histology and registry. The four 

factors varied in completeness, but increased over time. WHO grade has been collected the 

longest, and showed significant increases in completeness. Completeness of MGMT and 1p/19q 

codeletion was highest for glioma subtypes for which testing is recommended by clinical practice 

guidelines. Completeness of all factors varied by histology and cancer registry. Overall, several of 

the factors had high completeness, and all increased in completeness over time. With increasing 
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focus on ‘precision medicine’ and the incorporation of molecular parameters into the 2016 WHO 

CNS tumor Classification, it is critical that the data are complete, and factors collected at the 

population level are fully integrated into cancer reporting. It is critical that cancer registries 

continue to collect established and emerging prognostic and predictive factors.
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Introduction

Cancer registries are a critical resource for monitoring cancer incidence and estimating 

cancer survival on a population level. The minimum level of data required for these 

registries to fulfill this function is the collection of basic demographic information, tumor 

site, and assigned histology for every new cancer case diagnosed within their geographic 

region. As cancer research progresses, investigators have uncovered many other factors of 

significance to the natural history of a disease and in estimating prognosis. Many of these—

including basic treatment information—are currently required data elements collected for all 

cases by registries within the National Cancer Institute's (NCI) Surveillance, Epidemiology 

and End Results (SEER) registry program. SEER registries also collect additional cancer-

specific variables, such as tumor markers, not required by other surveillance organizations.

Cancer staging is a critical component of determining cancer prognosis and proper course of 

treatment and provides a rubric for evaluating how much cancer is in a person's body and 

where the cancer is located. The American Joint Committee on Cancer (AJCC) has 

developed a classification and staging system used for all cancers except those within the 

central nervous system (CNS). For these tumors, AJCC has developed the Collaborative 

Staging (CS) schema, an important standard for cancer registration. SEER registries 

regularly collect information according to site-specific CS schema as defined by the Seventh 

Edition of AJCC, though the time when data collection began for each factor and whether or 

not these are required data varies significantly [1]. Brain and other CNS tumors have been 

classified according to the 2000 [2] and 2007 [3] editions of the World Health Organization 

(WHO). The 2007 Classification of Tumours of the CNS [3] assigns a WHO grade (I 

through IV) based on predicted clinical behavior. Grading assignments are recorded by 

cancer registrars as Collaborative Stage Site-Specific Factor 1—WHO Grade Classification 
according to the AJCC CS schema [4] At the time of this study, the Eighth Edition of AJCC 

is under revision with publication due by the end of 2016. 2016 WHO Classification of 
Tumours of the CNS was revised and published in May 2016 [5]. Both these revisions will 

impact future cancer registration practices.

For brain and CNS tumors, SEER registries currently collect information on eight site-

specific factors (SSF) defined by the CS schema, including: WHO grade (SSF 1), Ki-67/

IB-1 Labeling Index (SSF 2), Karnofsky performance status (KPS) (SSF 3), promoter 

methylation status of the gene O-6-methylguanine-DNA methyltransferase (MGMT, SSF 4), 

deletion of the short (p) arm of chromosome 1 (SSF 5), deletion [also called loss of 
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heterozygosity (LOH)] of the long (q) arm of chromosome 19 (SSF 6), extent of surgical 

resection (SSF 7), and whether a tumor was unifocal or multifocal (SSF 8) (please see 

supplementary Table 1 for more information on these factors). However, only 4 of these 8 

factors have mandatory collection: WHO grade, methylation of the MGMT gene promoter, 

1p deletion and 19q deletion. These factors are important to track on a population level, as 

they are associated with clinical outcomes for specific brain and CNS histologies.

Cancer registrars obtain patient information through review of patients' pathology reports 

and other clinical records. Though some of these factors are relevant to brain tumor 

prognosis, they may not be recorded in the medical records of all patients. This analysis 

aimed to determine the availability and completeness of CS SSF data collection for brain 

and CNS cases in the SEER database.

Methods

Data were obtained from the SEER program for all 18 registries from the years 2004–2012 

[6]. Registries included within this program represent approximately 28 % of the US as of 

the 2010 census [7]. They are funded by the NCI to conduct active follow-up for clinical 

outcomes on all cases, as well as to collect additional pieces of data that may not be 

collected by other central cancer registries. Data for the SSF 1 variable are currently 

available in the public access SEER data release. Data for the other SSFs were requested 

from SEER and approved by their custom data review group. This current study was 

conducted under exempt approval from the University Hospitals of Cleveland Institutional 

Review Board (IRB).

All cases of malignant and non-malignant brain and CNS tumors diagnosed in the SEER 18 

registries between the years of 2004 and 2012 were included in this analysis. Brain and CNS 

tumors were defined as tumors occurring in the following categories as listed by ICD-O-3 

(International Classification of Diseases for Oncology, 3rd edition) [8] three site codes and 

CS schema: C70.0, C71.0–C71.9 (Brain [9]), C70.1, C70.9, C72.0–C72.5, C72.8–C72.9 

(CNS Other [10]), C75.1, C75.2, C75.3 (Intracranial Glands [11]). SEER*Stat 8.2.1 [12] 

was used to generate a list of cases. SSFs 4–6 were collected for brain and CNS tumors only 

after 2010, and, as a result, only cases diagnosed from 2010 to 2012 were used for these 

analyses. SSF 4–6 were examined for brain and CNS tumors in the broad category of 

gliomas (ICD-O-3 histology codes: 9380–9384, 9391–9460, 9480 [13]) only. Completeness 

of each site specific factor (SSF) was assessed for brain tumor cases overall, as well as by 

histologic types defined by the CBTRUS histologic grouping scheme [13], and year of 

diagnosis. Applicable years, sites, and histologies are listed in supplementary Table 1. 

Definitions of complete and incomplete varied by SSF and are also listed in supplementary 

Table 1.

Results

Frequencies, percent complete and percent incomplete for each SSF by histology are 

presented in Table 1. Frequencies and percent completeness by each of the SEER 18 

registries are presented in Table 2. The percentage of records with complete WHO grade for 
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all gliomas, embryonal tumors, meningioma, and nerve sheath tumors by year are presented 

in Fig. 1.

CS site-specific factor 1—World Health Organization (WHO) grade classification

Overall, WHO grade completeness steadily increased from 2004 to 2012, increasing from 

30.3 to 63.9 %. Percent completeness by year is presented in Fig. 2. The tumors with the 

largest increase in completeness were the astrocytoma entities, increasing from 18.2 to 

80.8 %. Other neuro-epithelial tumors decreased in completeness from 2004 to 2012, 44.4–

18.2 %. From 2004 to 2012, the histologies with the highest average percentage of 

completion for WHO grade were anaplastic oligodendroglioma (87.9 %), oligoastrocytic 

tumors (87.9 %), and anaplastic astrocytoma (86.1 %). In 2012, the tumors with the highest 

percentage of completion were oligoastrocytic tumors with 98.1 % completeness. 

Completeness for WHO grade by registry ranged from 36.7 to 52.8 % (Table 2).

CS site-specific factor 4—methylation of the O6-methylguanine-methyltransferase (MGMT) 
gene promoter

Overall, methylation of MGMT completeness increased slightly from 2010 to 2012, 

increasing from 7.7 to 10.3 %. Percent of record completeness by year for diffuse 

astrocytoma, anaplastic astrocytoma, glioblastoma, oligodendro-glioma, anaplastic 

oligodendroglioma, and oligoastrocytic tumors are presented in Fig. 3. The histology with 

the largest increase in completeness was oligoastrocytic tumors, increasing from 6.9 to 

10.4 %. From 2010 to 2012, the histologies with the highest average percentage of 

completion for methylation of MGMT were glioblastoma (12.1 %), oligoastrocytic tumors 

(9.5 %), and anaplastic oligodendroglioma (8.8 %). In 2012, the histology with the highest 

percentage of completion was glioblastoma with 13.8 % completeness. Completeness for 

methylation of MGMT by registry ranged from 0.8 to 20.1 % (Table 2).

CS site-specific factor 5—chromosome 1p: loss of heterozygosity (LOH)

Overall, 1p deletion (also known as loss of heterozygosity) completeness decreased 

negligibly from 2010 to 2012, decreasing from 9.3 to 9.0 %. Percent of record completeness 

by year for diffuse astrocytoma, anaplastic astrocytoma, glioblastoma, oligodendroglioma, 

anaplastic oligodendroglioma, and oligoastrocytic tumors are presented in Fig. 3. The 

histology with the largest measureable increase in completeness was oligoastrocytic tumors, 

increasing from 39.4 to 50.6 %. Several histologies experienced decreases in completeness 

from 2010 to 2012. The histology with the largest measureable decrease was diffuse 

astrocytoma, decreasing from 10.8 to 7.9 %. From 2010 to 2012, the average change in 1p 

deletion completeness was a 2.4 % increase. From 2010 to 2012, the histologies with the 

highest average percentage of completion were oligodendroglioma (49.8 %), oligoastrocytic 

tumors (47.8 %), and anaplastic oligodendroglioma (43.3 %). In 2012, the histology with the 

highest percentage of completion was oligodendroglioma with 52.5 %. Completeness for 1p 

deletion by registry ranged from 0.0 to 28.0 % (Table 2).
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CS site-specific factor 6—chromosome 19q: loss of heterozygosity (LOH)

Overall, 19q deletion (also known has loss of heterozygosity) completeness slightly 

decreased from 2010 to 2012, decreasing from 9.5 to 9.0 %. Percent of record completeness 

by year for diffuse astrocytoma, anaplastic astrocytoma, glioblastoma, oligodendroglioma, 

anaplastic oligodendroglioma, and oligoastrocytic tumors are presented in Fig. 3. The 

histology with the largest increase in completeness was oligoastrocytic tumors, increasing 

from 40.6 to 51.9 %. Several histologies experienced decreases in completeness from 2010 

to 2012. The histology with the largest decrease was diffuse astrocytoma, decreasing from 

10.8 to 7.9 %. From 2010 to 2012, the histologies with the highest average percentage of 

completion for 19q deletion were oligodendroglioma (50.2 %), oligoastrocytic tumors 

(49.3 %), and anaplastic oligodendroglioma (42.9 %). In 2012, the histology with the 

highest percentage of completion was oligodendroglioma with 54.1 %. Completeness for 

19q deletion by registry ranged from 0.0 to 28.0 % (Table 2).

Discussion

Completeness of SSF for brain tumors in the SEER 18 data varied significantly by SSF, year 

of diagnosis, and histologic type. There are many factors that could lead to this variation. 

Only 4 of the 8 described factors (see supplementary Table 1) are required by SEER for 

collection: SSF1, SFF4-6. Some of these factors are only (or mostly) relevant to specific 

histologic tumor types. SSF1 is potentially applicable to all brain tumor types and, 

correspondingly, has the highest completeness. SSF4-SSF6 components are mostly 

applicable to specific glioma subtypes and, therefore, it is expected that completeness of 

these factors would vary significantly by histology.

WHO grade is a critical factor for brain and CNS tumor prognosis. Previous analyses have 

examined the completeness of this variable, as well as the concordance (defined as being 

coded with a WHO grade that is appropriate for the histology code) for selected histologies 

[14]. Overall, when this variable is complete, it is generally coded with a value that is an 

accurate WHO grade for that histology. It is to be noted that some tumors that occur within 

the sites classified as brain and CNS do not have an assigned WHO grade. These include 

tumors that are classified as endocrine tumors (e.g. pituitary adenoma), or hematopoietic 

tumors (e.g. primary CNS lymphomas). Some brain and CNS tumors are not assigned a 

WHO grade in clinical practice (e.g. hemangioblastoma, and schwannoma) as these 

measures may not be clinically important. Both of these may contribute to lower 

completeness of WHO grade overall. While there is some correlation between the ICD-O-3 

histology and behavior codes, WHO grade when assigned is widely used for treatment 

decisions for patients with brain tumors. As WHO grade is a factor that is considered to be 

prognostic [3], it is critical in relevant histologies to have high completeness of this variable 

for measurement of grade-specific survival patterns.

Methylation of the promoter of the MGMT gene has been validated as a significant predictor 

of improved survival in glioblastoma [15, 16]. Methylation of the gene promoter inhibits 

transcription of this gene, thus ‘silencing’ the gene. MGMT is a DNA repair protein, and it 

is assumed that the decreases in protein levels increase sensitivity to the alkylating 

chemotherapies (e.g. temozolomide) that are often used in the treatment of gliomas [17]. 
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Studies have shown that tumors with methylated MGMT promoters are more sensitive to 

alkylating chemotherapy and radiotherapy [18], and the methylation status is often used to 

predict the likelihood of response in glioma patients to temozolomide [19]. However, 

methylation status of MGMT is not useful for many brain and CNS histologies, as MGMT 
activity varies significantly between histologies, as well as by WHO grade [20]. MGMT 
methylation has been found in only about 40 % of gliomas and very rarely in non-glial brain 

tumors [21].

Though methylation of the MGMT promoter can be found in lower grade gliomas, it only 

has significant clinical relevance in glioblastoma. There are many reasons why this test 

might not be ordered as part of standard clinical practice, contributing to low completeness. 

Some physicians may treat all patients with temozolomide regardless of MGMT methylation 

status, and as a result this test would not be relevant to determining an individual's treatment. 

One of the more common methods to measure the level of promoter methylation of MGMT 
uses a combination of real-time quantitative PCR and methylation-specific PCR, and many 

hospitals do not have the infrastructure to conduct these tests in a Clinical Laboratory 

Improvement Amendments (CLIA) certified laboratory environment. Comparison of 

techniques has suggested that pyrosequencing may provide a more accurate assessment of 

methylation status [22], but this technique is significantly more expensive and may not be 

feasible for widespread implantation in the clinic. These analyses have also shown that 

methylation quantification for a particular tumor may vary depending on the test used.

Methylation of the MGMT promoter is quantified as the total number of the 17 CpG island 

sites within this region with an attached methyl group, although not all 17 sites are examined 

consistently. The point along this scale when the promoter is determined to be fully 

‘silenced’ is not well-established and the results of these test may be difficult to interpret. As 

these tests are often not conducted within most hospitals, the long turnaround time for 

receiving results from an outside institution may deter pathologists from ordering these tests. 

Additionally, the test for MGMT methylation may not have been recommended by clinical 

practice guidelines consistently and, therefore, the reimbursement by third parties could be a 

limiting factor for ordering the test. Though this factor was first determined to be prognostic 

in 2005 [15], the National Comprehensive Cancer Network (NCCN; http://www.nccn.org/) 

guidelines for CNS tumors did not recommended this test during the time-period examined 

in this study. As a result the availability of this biomarker in SEER in this time frame (2010–

2012) data is low (12 % of glioblastomas had reported MGMT test results). MGMT testing 

for glioblastoma has been incorporated in NCCN guidelines since 2013 which is expected to 

influence future test rates based on SEER data.

The utility of MGMT methylation as a prognostic marker may also be diminishing in light 

of recent molecular analyses. The results of the European Organisation for Research and 

Treatment of Cancer (EORTC) 26951 trial found that the prognostic outcome predicted by 

MGMT promoter methylation varied depending on the IDH1 mutation status of the tumor in 

grade III gliomas [23], and suggest use of this biomarker in the context of known IDH1 
status. The German Oncology Working Group (NOA) 08 trial found MGMT methylation to 

have significant prognostic value in the elderly, where incidence of IDH1/2 mutations and 

the G-CIMP phenotype are rare compared to younger cohorts [24, 25]. Recent analyses of 
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data generated by The Cancer Genome Atlas have confirmed the importance of methylation 

in predicting prognosis in glioma [26] with a strong survival benefit conferred by having a 

highly methylated phenotype [glioma-CpG island methylator phenotype (G-CIMP)] [27]. 

These phenotypes are correlated [28], though the G-CIMP phenotype is much rarer in 

glioblastoma than MGMT methylation. While this phenotype may be a better predictor of 

survival in glioma than promoter methylation of MGMT alone [29], genome-wide 

methylation assays present many of the same problems as methylation quantification at a 

specific locus.

Whole-arm deletions in the short arm of chromosome 1 and the long arm of chromosome 19 

have been recognized as markers of prolonged median survival in oligodendroglioma since 

1998 [30]. This marker significantly predicts positive response to chemotherapy and 

radiation treatment in oligodendroglioma and anaplastic oligodendroglioma [31–33], and is 

most relevant in lower grade gliomas as compared to glioblastoma. Recent analyses of data 

collected by the Cancer Genome Atlas have demonstrated that these alterations can precisely 

stratify low grade gliomas by prognosis when combined with mutation status in isocitrate 

dehydrogenase 1/2 (IDH1/2) [26, 34]. These results suggest that 1p/19q deleted glioma is a 

distinct entity with a separate process of gliomagenesis than gliomas that do not have 1p/19q 

deletion. With the 2016 revision to the WHO classification of tumors of the CNS, 

characterization of this feature is essential to diagnosing oligodendroglioma.

Testing for these markers has many of the same limitations as those found in testing MGMT 
methylation status. Some physicians may choose treatment that does not vary with their 

patient's status on these markers, and thus ordering these tests would not be relevant. These 

markers are most often evaluated using fluorescence in situ hybridization (FISH), and many 

hospitals may not have the equipment or personnel to conduct these tests. As a result, these 

tests may require sending tissue samples to other laboratories, causing a delay that may deter 

pathologists from ordering these tests. The results of FISH testing are somewhat subjective, 

as there may be significant interpatient variability in the extent to which these arms are 

deleted.

Testing for 1p loss and 19q loss was recommended by NCCN guidelines for tumors with an 

oligodendroglial component during the timeframe included in this study (2010–2012). 

Subsequently, the availability of this biomarker in the SEER data was the highest (around 

50 % for relevant histologies). However, these data may not fully represent the testing rates 

or compliance with guidelines. Cancer registrars are predominantly hospital-based with 

varying access to the medical records of community oncology practices. If the test was 

ordered by and reported to a community provider the test results may not have been 

available to the cancer registrars for abstracting for SEER. SEER registries collect pathology 

reports on reportable cases as available. On average, 80 % of SEER cases do have one or 

more pathology reports associated with the case, though this number varies from registry to 

registry with some registries being close to 100 %. Thus, SEER registrars have the 

opportunity to capture the test if it was incorporated in the pathology report. The College of 

American Pathologists (CAP) recommends that all molecular tests are incorporated in the 

pathology report including tests that were performed at a different lab. However, adherence 
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to this recommendation is not known, particularly for tests that were ordered by community 

oncologists.

Recent analyses of the lower grade gliomas, including WHO grade II and III (astrocytomas, 

oligodendrogliomas, and oligoastrocytomas) have found that these deletions are a critical 

prognostic factor that—along with mutations in IDH1/2—can be used to accurately stratify 

all grade II and III diffuse gliomas [34, 35]. In addition, codeletion of chromosome 1p/19q 

predicts a better outcome and a higher likelihood of temozolomide response in patients with 

such low grade gliomas [36]. Notably, the 2016 WHO classification of tumours of the CNS 
[37] includes these factors as diagnostic criteria for oligodendrogliomas and anaplastic 

oligodendrogliomas [3, 38, 39].

Molecular characterization of glioma has strongly established the importance of IDH1/2 
mutation in subtyping these tumors. Though IDH1/2 mutation has been recognized as being 

a significant prognostic marker since 2009 [40], the strength of evidence related to this 

marker has increased in recent years. In addition to recent analyses of grade II and grade III 

diffuse gliomas, a recent analysis of grade II–IV glioma has demonstrated that this is the 

most critical marker for stratifying all glioma [26]. This variable is not a component of the 

AJCC system, and despite being assessed frequently in neuropathology, it is not collected in 

the cancer registration process. Given the increasing importance of 1p/19q codeletion and 

IDH1/2 mutations for cancer subtyping and prognosis it is imperative that cancer registries 

continue to collect 1p/19q codeletion data and begin to incorporate IDH1/2 mutation testing 

in cancer surveillance as soon as possible.

The SSFs for brain and CNS tumors include many variables that are strong prognostic 

factors and critical for use in generating cancer survival statistics relevant for clinical 

practice. Cancer registrars are dependent on neuropathologists, or sometimes other 

clinicians, to order these tests. They are also dependent on neurosurgeons, neuro-

radiologists, and neuro-oncologists to include these data in their medical records as related 

to each individual patient's care. Increased attention to these factors (in particular SSF4, 

SSF5 and SSF6) in the scientific literature and clinical practice guidelines may be 

responsible for increased reporting on these factors, as well as encouraging their inclusion in 

the medical records and specifically in the pathology reports. Indeed, with the publication of 

the 2016 WHO classification of CNS tumors, pathologists will not be able to make 

particular diagnoses (e.g., “Oligodendroglioma, IDH-mutant and 1p/19q-codeleted”) in the 

absence of such molecular data.

The wide range of completeness values for each factor by SEER registry suggest that there is 

geographic variation that influences the completeness of these factors. While this can reflect 

differences in test utilization, it also can be partially explained with varying access to 

medical records and different abstracting practices. Each registry ranges in its completeness 

of each factor as well, with no one registry having the highest level of completeness in all 

factors. The type of institution where a patient is diagnosed may also determine whether 

these tests are ordered or included in the clinical records. Tertiary referral centers or teaching 

institutions may be more likely to order testing for these factors, though this dataset does not 

contain hospital-level information to know definitively.
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Some of the SSF are not or have never been required information for cancer collection by 

SEER or by the individual SEER registries, and registrars may not have abstracted these 

variables as a result. In addition, since they are not required within SEER, they are not 

subject to SEER's quality control standards and would not be released by SEER to the 

general research community. All of these reasons may contribute to variation by registry. 

Insurance coverage for these tests may vary and may affect ordering and subsequent 

inclusion in medical records, thereby contributing to these lower reporting rates. 

Nonetheless, it is expected that the publication of the 2016 WHO classification of CNS 

tumors, with its incorporation of molecular parameters into specific diagnoses, will 

encourage third-party payers to cover these critical tests, and will in turn increase their 

completeness in tumor registries.

There are significant changes to glioma histology classification that are included in the 2016 

WHO classification of CNS tumors [5]. Oligoastrocytoma has been long considered an 

entity that is distinct from astrocytoma and oligodendroglioma. In the 2016 WHO 

classification of CNS tumors, because recent molecular analyses have suggested that these 

tumors do not exist as a distinct entity [41] and can be more specifically diagnosed as 

astrocytoma and oligodendroglioma, the diagnosis of oligoastrocytoma is strongly 

discouraged and qualified with a “not otherwise specified” designation. Changes in 

diagnostic criteria have occurred over time for many brain tumor histologies, including 

previous changes in criteria for glioma and in embryonal tumors, which jeopardize long-

term assessments of brain tumor incidence and survival trends. When using data collected 

prior to large changes in histologic criteria, it is critical to keep in mind the changes to the 

histology schema that have occurred over time in revisions to the WHO classification of 

CNS tumors. Investigators using these data would be well served by analyzing data collected 

before and after the implementation of major revisions separately prior to combining these 

data for analysis.

Cancer registries are invaluable resources for monitoring population-level patterns of cancer 

incidence and survival. However, there are limitations to these data. In particular, there is no 

central pathology review. and only a limited number of variables are collected This means 

that despite changes to the histology schema that may occur over time, it is not possible 

without additional variables to go back and re-classify any tumors based on new criteria. In 

addition to changes in histologic criteria over time, there is significant interrater variability 

in histopathological diagnosis of glioma [42, 43]. Due to these reasons, lack of central 

pathology review can limit the use of cancer registry data in many analyses. A recent 

analysis of data from EORTC 26951 and 26882 found that while consensus of diagnosis in 

glioma was 66 % overall, known molecular markers could be incorporated in a diagnostic 

algorithm along with histologic features to increase the rate of consensus [44].

With the recent revision to the WHO criteria for CNS tumors [5], IDH1/2 mutation and 

1p/19q codeletion will become the primary factors by which gliomas are classified. 

Incorporation of these factors into cancer registration as soon as possible is critical to 

providing accurate and useful data for brain tumors within the cancer registry system. 

Including these molecular markers, which more accurately stratify gliomas than 

histopathology alone, will significantly increase the utility of these data for the monitoring 
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of brain tumor incidence and survival. While other data sources, such as insurance billing 

records or hospital-based datasets, allow for more detailed interrogation of patterns of cancer 

treatment and outcomes, cancer registries are the only source for statistics that are truly 

generalizable to the US population. As technology continues to improve and cancer 

diagnostics become increasingly molecular, it is critical that these clinically relevant data are 

collected within the cancer registration process.

Conclusion

With the increasing focus on ‘precision medicine,’ it has become important to the brain 

tumor community that we measure tumor markers that affect brain tumor diagnosis, 

prognosis and predict the response to therapy at the population level. Survival after treatment 

with various therapies cannot be accurately evaluated without taking these critical pieces of 

information into account. Cancer registries are essential to measuring the burden of cancer 

on the US population, and the collection of new variables that are reflective of contemporary 

clinical practice is key to providing accurate and useful statistics to researchers, clinicians, 

patients, and their families.
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Fig. 1. 
Percent of records with complete WHO grade by year of diagnosis, SEER 2004–2012
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Fig. 2. 
Percent Completeness trend for site specific factors (SSF): SSF1, SSF2, SSF3, SSF7, and 

SSF8 from SEER 2008–2012
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Fig. 3. 
Percent of record complete by year for required site specific factors (SSF) 4–6 for (a) diffuse 

astrocytoma, (b) anaplastic astrocytoma, (c) glioblastoma, (d) oligodendroglioma, (e) 

anaplastic oligodendroglioma, and (f) oligoastrocytic tumors, SEER 2010–2012
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